.. _tut-morecontrol: *********************** 更多流程控制工具 *********************** 除了上一章介绍的 :keyword:`while` 语句外, Python 还支持其他语言中常见的流程控制语句,只是稍有不同。 .. _tut-if: :keyword:`!if` 语句 ========================= 最让人耳熟能详的应该是 :keyword:`if` 语句。例如:: >>> x = int(input("Please enter an integer: ")) Please enter an integer: 42 >>> if x < 0: ... x = 0 ... print('Negative changed to zero') ... elif x == 0: ... print('Zero') ... elif x == 1: ... print('Single') ... else: ... print('More') ... More if 语句包含零个或多个 :keyword:`elif` 子句, 以及可选 :keyword:`else` 子句。 关键字 ':keyword:`!elif`' 是 'else if' 的缩写, 适用于避免过多的缩进。可以把 An :keyword:`!if` ... :keyword:`!elif` ... :keyword:`!elif` ... 序列看作是其他语言中 ``switch`` 或 ``case`` 语句的替代品。 如果你将相同的值与几个常量进行比较,或者检查特定的类型或属性,你可能还会发现 :keyword:`!match` 语句的用处。更多细节请参见 :ref:`tut-match`。例如:: >>> def http_error(status): ... match status: ... case 400: ... return "Bad request" ... case 404: ... return "Not found" ... case 418: ... return "I'm a teapot" ... case _: ... return "Something's wrong with the Internet" .. _tut-for: :keyword:`!for` 语句 ========================== .. index:: statement: for Python 的 :keyword:`for` 语句与 C 或 Pascal 中的不同。 Python 的 for 语句不迭代算术递增数值(如 Pascal),或是给予用户定义迭代步骤和暂停条件的能力(如 C),而是迭代列表或字符串等任意序列,元素的迭代顺序与在序列中出现的顺序一致。 例如: .. One suggestion was to give a real C example here, but that may only serve to confuse non-C programmers. :: >>> # 测量一些字符串: ... words = ['cat', 'window', 'defenestrate'] >>> for w in words: ... print(w, len(w)) ... cat 3 window 6 defenestrate 12 遍历某个集合的同时修改该集合的内容,很难获取想要的结果。要在遍历时修改集合的内容,应该遍历该集合的副本或创建新的集合:: # 创建一个示例集合 users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'} # 策略:迭代一个副本 for user, status in users.copy().items(): if status == 'inactive': del users[user] # 策略:创建一个新的集合 active_users = {} for user, status in users.items(): if status == 'active': active_users[user] = status .. _tut-range: The :func:`range` 函数 ========================== 内置函数 :func:`range` 常用于遍历数字序列,该函数可以生成算术级数:: >>> for i in range(5): ... print(i) ... 0 1 2 3 4 生成的序列不包含给定的终止数值; ``range(10)`` 生成 10 个值,这是一个长度为 10 的序列, 其中的元素索引都是合法的。range 可以不从 0 开始,还可以按指定幅度递增(递增幅度称为 '步数',支持负数):: >>> list(range(5, 10)) [5, 6, 7, 8, 9] >>> list(range(0, 10, 3)) [0, 3, 6, 9] >>> list(range(-10, -100, -30)) [-10, -40, -70] :func:`range` 和 :func:`len` 组合在一起,可以按索引迭代序列:: >>> a = ['Mary', 'had', 'a', 'little', 'lamb'] >>> for i in range(len(a)): ... print(i, a[i]) ... 0 Mary 1 had 2 a 3 little 4 lamb 不过,大多数情况下 :func:`enumerate` 函数更为便捷,详见 :ref:`tut-loopidioms`. 如果只输出 range,会出现意想不到的结果:: >>> range(10) range(0, 10) :func:`range` 返回对象的操作和列表很像,但其实这两种对象不是一回事。迭代时,该对象基于所需序列返回连续项,并没有生成真正的列表,从而节省了空间。 这种对象称为可迭代对象 :term:`iterable`, 函数或程序结构可通过该对象获取连续项,直到所有元素全部迭代完毕。 :keyword:`for` 语句就是这样的架构, :func:`sum` 是一种把可迭代对象作为参数的函数:: >>> sum(range(4)) # 0 + 1 + 2 + 3 6 .. _tut-break: 循环中的 :keyword:`!break` 、 :keyword:`!continue` 语句以及 :keyword:`!else` 子句 ============================================================================================ :keyword:`break` 语句和C语言中的类似, 用于跳出最近的:keyword:`for` 或 :keyword:`while` 循环。 循环语句支持 :keyword:`!else` 子句; :keyword:`for` 循环中, 可迭代对象中的元素全部循环完毕时,或 :keyword:`while` 循环的条件为假时,执行该子句;:keyword:`break` 语句终止循环时,不执行该子句。 请看下面这个查找素数的循环示例:: >>> for n in range(2, 10): ... for x in range(2, n): ... if n % x == 0: ... print(n, 'equals', x, '*', n//x) ... break ... else: ... # loop fell through without finding a factor ... print(n, 'is a prime number') ... 2 is a prime number 3 is a prime number 4 equals 2 * 2 5 is a prime number 6 equals 2 * 3 7 is a prime number 8 equals 2 * 4 9 equals 3 * 3 (没错,这段代码就是这么写。仔细看: ``else`` 子句属于 :keyword:`for` 循环, **而非** :keyword:`if` 语句。) 与 :keyword:`if` 语句相比,循环的 ``else` 子句更像 :keyword:`try` 的 ``else`` 子句: :keyword:`try` 的 ``else`` 子句在未触发异常时执行, 循环的 ``else`` 子句则在未运行 ``break`` 时执行。更多有关 :keyword:`!try` 语句和异常, 详见 :ref:`tut-handling`. :keyword:`continue` 语句也借鉴自 C 语言,表示继续执行循环的下一次迭代:: >>> for num in range(2, 10): ... if num % 2 == 0: ... print("Found an even number", num) ... continue ... print("Found an odd number", num) ... Found an even number 2 Found an odd number 3 Found an even number 4 Found an odd number 5 Found an even number 6 Found an odd number 7 Found an even number 8 Found an odd number 9 .. _tut-pass: :keyword:`!pass` 语句 =========================== :keyword:`pass` 语句不执行任何操作。语法上需要一个语句,但程序不实际执行任何动作时,可以使用该语句。例如:: >>> while True: ... pass # Busy-wait for keyboard interrupt (Ctrl+C) ... 下面这段代码创建了一个最小的类:: >>> class MyEmptyClass: ... pass ... 此外 :keyword:`pass` 可以用作函数或条件子句的占位符, 让开发者聚焦更抽象的层次。此时,程序直接忽略 :keyword:`!pass` :: >>> def initlog(*args): ... pass # 记住要实现这一点! ... .. _tut-match: :keyword:`!match` 语句 ============================ 匹配语句接受一个表达式,并将其值与一个或多个case块给出的连续模式进行比较。 从表面上看,这类似于C、Java或JavaScript(以及许多其他语言)中的switch语句, 但它也可以从值中提取组件(序列元素或对象属性)到变量。 最简单的方式是将值与一个或多个字面量进行比较:: def http_error(status): match status: case 400: return "Bad request" case 404: return "Not found" case 418: return "I'm a teapot" case _: return "Something's wrong with the internet" 注意最会一块: "变量名" ``_`` 扮演 *通配符* 匹配其他,如果没有事件匹配,则不执行任何分支。 你可以简写匹配模式 ``|`` ("或"):: case 401 | 403 | 404: return "Not allowed" 模式可以看作开箱作业,可用于绑定变量:: # point 是一个 (x, y) 元祖 match point: case (0, 0): print("Origin") case (0, y): print(f"Y={y}") case (x, 0): print(f"X={x}") case (x, y): print(f"X={x}, Y={y}") case _: raise ValueError("Not a point") 仔细研究这个! 第一个模式有两个字面量,可以认为是上面所示的字面量模式的延伸。 但是接下来的两个模式结合一个数值和一个变量,该变量*绑定*来自对象(``point``)的值。 第四模式捕获两个值,这使得它在概念上类似于开箱作业``(x, y) = point``。 如果使用类来构建数据,则可以使用类名,后跟类似构造函数的参数列表,但能够将属性捕获到变量中:: class Point: x: int y: int def where_is(point): match point: case Point(x=0, y=0): print("Origin") case Point(x=0, y=y): print(f"Y={y}") case Point(x=x, y=0): print(f"X={x}") case Point(): print("Somewhere else") case _: print("Not a point") 您可以使用带有一些内置类的位置参数为其属性提供订购(例如 dataclasses)。 您还可以通过在类中设置 ``__match_args__`` 特殊属性来定义模式中属性的特定位置。 如果它设置为(“x”,“y”),则以下模式都是等效的(并且全部将``y``属性绑定到 ``var`` 变量): Point(1, var) Point(1, y=var) Point(x=1, y=var) Point(y=var, x=1) 阅读模式的推荐方法是将它们视为你将放在赋值左侧的内容的扩展形式,以便了解哪些变量设置成什么。 仅独立名称 (如上面的 ``var``) 被匹配语句分配。 点名称 (如 ``foo.bar``), 属性名称 (上面的 ``x=`` 和 ``y=``) 或者类名 (如上面的 ``Point`` 旁被识别的 "(...)" ) 则永远不会分配。 模式可以任意嵌套。 比如,如果有一个简短的点列表,我们可以这样匹配:: match points: case []: print("No points") case [Point(0, 0)]: print("The origin") case [Point(x, y)]: print(f"Single point {x}, {y}") case [Point(0, y1), Point(0, y2)]: print(f"Two on the Y axis at {y1}, {y2}") case _: print("Something else") We can add an ``if`` clause to a pattern, known as a "guard". If the guard is false, ``match`` goes on to try the next case block. Note that value capture happens before the guard is evaluated:: match point: case Point(x, y) if x == y: print(f"Y=X at {x}") case Point(x, y): print(f"Not on the diagonal") Several other key features of this statement: - Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually match arbitrary sequences. An important exception is that they don't match iterators or strings. - Sequence patterns support extended unpacking: ``[x, y, *rest]`` and ``(x, y, *rest)`` work similar to unpacking assignments. The name after ``*`` may also be ``_``, so ``(x, y, *_)`` matches a sequence of at least two items without binding the remaining items. - Mapping patterns: ``{"bandwidth": b, "latency": l}`` captures the ``"bandwidth"`` and ``"latency"`` values from a dictionary. Unlike sequence patterns, extra keys are ignored. An unpacking like ``**rest`` is also supported. (But ``**_`` would be redundant, so it not allowed.) - Subpatterns may be captured using the ``as`` keyword:: case (Point(x1, y1), Point(x2, y2) as p2): ... will capture the second element of the input as ``p2`` (as long as the input is a sequence of two points) - Most literals are compared by equality, however the singletons ``True``, ``False`` and ``None`` are compared by identity. - Patterns may use named constants. These must be dotted names to prevent them from being interpreted as capture variable:: from enum import Enum class Color(Enum): RED = 0 GREEN = 1 BLUE = 2 match color: case Color.RED: print("I see red!") case Color.GREEN: print("Grass is green") case Color.BLUE: print("I'm feeling the blues :(") For a more detailed explanation and additional examples, you can look into :pep:`636` which is written in a tutorial format. .. _tut-functions: 定义函数 ================== 下列代码创建一个可以输出限定数值内的斐波那契数列函数:: >>> def fib(n): # write Fibonacci series up to n ... """Print a Fibonacci series up to n.""" ... a, b = 0, 1 ... while a < n: ... print(a, end=' ') ... a, b = b, a+b ... print() ... >>> # Now call the function we just defined: ... fib(2000) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 .. index:: single: documentation strings single: docstrings single: strings, documentation The keyword :keyword:`def` introduces a function *definition*. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented. The first statement of the function body can optionally be a string literal; this string literal is the function's documentation string, or :dfn:`docstring`. (More about docstrings can be found in the section :ref:`tut-docstrings`.) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it's good practice to include docstrings in code that you write, so make a habit of it. The *execution* of a function introduces a new symbol table used for the local variables of the function. More precisely, all variable assignments in a function store the value in the local symbol table; whereas variable references first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly assigned a value within a function (unless, for global variables, named in a :keyword:`global` statement, or, for variables of enclosing functions, named in a :keyword:`nonlocal` statement), although they may be referenced. The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using *call by value* (where the *value* is always an object *reference*, not the value of the object). [#]_ When a function calls another function, or calls itself recursively, a new local symbol table is created for that call. A function definition associates the function name with the function object in the current symbol table. The interpreter recognizes the object pointed to by that name as a user-defined function. Other names can also point to that same function object and can also be used to access the function:: >>> fib >>> f = fib >>> f(100) 0 1 1 2 3 5 8 13 21 34 55 89 Coming from other languages, you might object that ``fib`` is not a function but a procedure since it doesn't return a value. In fact, even functions without a :keyword:`return` statement do return a value, albeit a rather boring one. This value is called ``None`` (it's a built-in name). Writing the value ``None`` is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using :func:`print`:: >>> fib(0) >>> print(fib(0)) None It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:: >>> def fib2(n): # return Fibonacci series up to n ... """Return a list containing the Fibonacci series up to n.""" ... result = [] ... a, b = 0, 1 ... while a < n: ... result.append(a) # see below ... a, b = b, a+b ... return result ... >>> f100 = fib2(100) # call it >>> f100 # write the result [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] This example, as usual, demonstrates some new Python features: * The :keyword:`return` statement returns with a value from a function. :keyword:`!return` without an expression argument returns ``None``. Falling off the end of a function also returns ``None``. * The statement ``result.append(a)`` calls a *method* of the list object ``result``. A method is a function that 'belongs' to an object and is named ``obj.methodname``, where ``obj`` is some object (this may be an expression), and ``methodname`` is the name of a method that is defined by the object's type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using *classes*, see :ref:`tut-classes`) The method :meth:`append` shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to ``result = result + [a]``, but more efficient. .. _tut-defining: More on Defining Functions ========================== It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined. .. _tut-defaultargs: Default Argument Values ----------------------- The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:: def ask_ok(prompt, retries=4, reminder='Please try again!'): while True: ok = input(prompt) if ok in ('y', 'ye', 'yes'): return True if ok in ('n', 'no', 'nop', 'nope'): return False retries = retries - 1 if retries < 0: raise ValueError('invalid user response') print(reminder) This function can be called in several ways: * giving only the mandatory argument: ``ask_ok('Do you really want to quit?')`` * giving one of the optional arguments: ``ask_ok('OK to overwrite the file?', 2)`` * or even giving all arguments: ``ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')`` This example also introduces the :keyword:`in` keyword. This tests whether or not a sequence contains a certain value. The default values are evaluated at the point of function definition in the *defining* scope, so that :: i = 5 def f(arg=i): print(arg) i = 6 f() will print ``5``. **Important warning:** The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:: def f(a, L=[]): L.append(a) return L print(f(1)) print(f(2)) print(f(3)) This will print :: [1] [1, 2] [1, 2, 3] If you don't want the default to be shared between subsequent calls, you can write the function like this instead:: def f(a, L=None): if L is None: L = [] L.append(a) return L .. _tut-keywordargs: Keyword Arguments ----------------- Functions can also be called using :term:`keyword arguments ` of the form ``kwarg=value``. For instance, the following function:: def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'): print("-- This parrot wouldn't", action, end=' ') print("if you put", voltage, "volts through it.") print("-- Lovely plumage, the", type) print("-- It's", state, "!") accepts one required argument (``voltage``) and three optional arguments (``state``, ``action``, and ``type``). This function can be called in any of the following ways:: parrot(1000) # 1 positional argument parrot(voltage=1000) # 1 keyword argument parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments parrot('a million', 'bereft of life', 'jump') # 3 positional arguments parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword but all the following calls would be invalid:: parrot() # required argument missing parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument parrot(110, voltage=220) # duplicate value for the same argument parrot(actor='John Cleese') # unknown keyword argument In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match one of the arguments accepted by the function (e.g. ``actor`` is not a valid argument for the ``parrot`` function), and their order is not important. This also includes non-optional arguments (e.g. ``parrot(voltage=1000)`` is valid too). No argument may receive a value more than once. Here's an example that fails due to this restriction:: >>> def function(a): ... pass ... >>> function(0, a=0) Traceback (most recent call last): File "", line 1, in TypeError: function() got multiple values for argument 'a' When a final formal parameter of the form ``**name`` is present, it receives a dictionary (see :ref:`typesmapping`) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form ``*name`` (described in the next subsection) which receives a :ref:`tuple ` containing the positional arguments beyond the formal parameter list. (``*name`` must occur before ``**name``.) For example, if we define a function like this:: def cheeseshop(kind, *arguments, **keywords): print("-- Do you have any", kind, "?") print("-- I'm sorry, we're all out of", kind) for arg in arguments: print(arg) print("-" * 40) for kw in keywords: print(kw, ":", keywords[kw]) It could be called like this:: cheeseshop("Limburger", "It's very runny, sir.", "It's really very, VERY runny, sir.", shopkeeper="Michael Palin", client="John Cleese", sketch="Cheese Shop Sketch") and of course it would print: .. code-block:: none -- Do you have any Limburger ? -- I'm sorry, we're all out of Limburger It's very runny, sir. It's really very, VERY runny, sir. ---------------------------------------- shopkeeper : Michael Palin client : John Cleese sketch : Cheese Shop Sketch Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were provided in the function call. Special parameters ------------------ By default, arguments may be passed to a Python function either by position or explicitly by keyword. For readability and performance, it makes sense to restrict the way arguments can be passed so that a developer need only look at the function definition to determine if items are passed by position, by position or keyword, or by keyword. A function definition may look like: .. code-block:: none def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2): ----------- ---------- ---------- | | | | Positional or keyword | | - Keyword only -- Positional only where ``/`` and ``*`` are optional. If used, these symbols indicate the kind of parameter by how the arguments may be passed to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are also referred to as named parameters. ------------------------------- Positional-or-Keyword Arguments ------------------------------- If ``/`` and ``*`` are not present in the function definition, arguments may be passed to a function by position or by keyword. -------------------------- Positional-Only Parameters -------------------------- Looking at this in a bit more detail, it is possible to mark certain parameters as *positional-only*. If *positional-only*, the parameters' order matters, and the parameters cannot be passed by keyword. Positional-only parameters are placed before a ``/`` (forward-slash). The ``/`` is used to logically separate the positional-only parameters from the rest of the parameters. If there is no ``/`` in the function definition, there are no positional-only parameters. Parameters following the ``/`` may be *positional-or-keyword* or *keyword-only*. ---------------------- Keyword-Only Arguments ---------------------- To mark parameters as *keyword-only*, indicating the parameters must be passed by keyword argument, place an ``*`` in the arguments list just before the first *keyword-only* parameter. ----------------- Function Examples ----------------- Consider the following example function definitions paying close attention to the markers ``/`` and ``*``:: >>> def standard_arg(arg): ... print(arg) ... >>> def pos_only_arg(arg, /): ... print(arg) ... >>> def kwd_only_arg(*, arg): ... print(arg) ... >>> def combined_example(pos_only, /, standard, *, kwd_only): ... print(pos_only, standard, kwd_only) The first function definition, ``standard_arg``, the most familiar form, places no restrictions on the calling convention and arguments may be passed by position or keyword:: >>> standard_arg(2) 2 >>> standard_arg(arg=2) 2 The second function ``pos_only_arg`` is restricted to only use positional parameters as there is a ``/`` in the function definition:: >>> pos_only_arg(1) 1 >>> pos_only_arg(arg=1) Traceback (most recent call last): File "", line 1, in TypeError: pos_only_arg() got some positional-only arguments passed as keyword arguments: 'arg' The third function ``kwd_only_args`` only allows keyword arguments as indicated by a ``*`` in the function definition:: >>> kwd_only_arg(3) Traceback (most recent call last): File "", line 1, in TypeError: kwd_only_arg() takes 0 positional arguments but 1 was given >>> kwd_only_arg(arg=3) 3 And the last uses all three calling conventions in the same function definition:: >>> combined_example(1, 2, 3) Traceback (most recent call last): File "", line 1, in TypeError: combined_example() takes 2 positional arguments but 3 were given >>> combined_example(1, 2, kwd_only=3) 1 2 3 >>> combined_example(1, standard=2, kwd_only=3) 1 2 3 >>> combined_example(pos_only=1, standard=2, kwd_only=3) Traceback (most recent call last): File "", line 1, in TypeError: combined_example() got some positional-only arguments passed as keyword arguments: 'pos_only' Finally, consider this function definition which has a potential collision between the positional argument ``name`` and ``**kwds`` which has ``name`` as a key:: def foo(name, **kwds): return 'name' in kwds There is no possible call that will make it return ``True`` as the keyword ``'name'`` will always bind to the first parameter. For example:: >>> foo(1, **{'name': 2}) Traceback (most recent call last): File "", line 1, in TypeError: foo() got multiple values for argument 'name' >>> But using ``/`` (positional only arguments), it is possible since it allows ``name`` as a positional argument and ``'name'`` as a key in the keyword arguments:: def foo(name, /, **kwds): return 'name' in kwds >>> foo(1, **{'name': 2}) True In other words, the names of positional-only parameters can be used in ``**kwds`` without ambiguity. ----- Recap ----- The use case will determine which parameters to use in the function definition:: def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2): As guidance: * Use positional-only if you want the name of the parameters to not be available to the user. This is useful when parameter names have no real meaning, if you want to enforce the order of the arguments when the function is called or if you need to take some positional parameters and arbitrary keywords. * Use keyword-only when names have meaning and the function definition is more understandable by being explicit with names or you want to prevent users relying on the position of the argument being passed. * For an API, use positional-only to prevent breaking API changes if the parameter's name is modified in the future. .. _tut-arbitraryargs: Arbitrary Argument Lists ------------------------ .. index:: single: * (asterisk); in function calls Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see :ref:`tut-tuples`). Before the variable number of arguments, zero or more normal arguments may occur. :: def write_multiple_items(file, separator, *args): file.write(separator.join(args)) Normally, these ``variadic`` arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the ``*args`` parameter are 'keyword-only' arguments, meaning that they can only be used as keywords rather than positional arguments. :: >>> def concat(*args, sep="/"): ... return sep.join(args) ... >>> concat("earth", "mars", "venus") 'earth/mars/venus' >>> concat("earth", "mars", "venus", sep=".") 'earth.mars.venus' .. _tut-unpacking-arguments: Unpacking Argument Lists ------------------------ The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in :func:`range` function expects separate *start* and *stop* arguments. If they are not available separately, write the function call with the ``*``\ -operator to unpack the arguments out of a list or tuple:: >>> list(range(3, 6)) # normal call with separate arguments [3, 4, 5] >>> args = [3, 6] >>> list(range(*args)) # call with arguments unpacked from a list [3, 4, 5] .. index:: single: **; in function calls In the same fashion, dictionaries can deliver keyword arguments with the ``**``\ -operator:: >>> def parrot(voltage, state='a stiff', action='voom'): ... print("-- This parrot wouldn't", action, end=' ') ... print("if you put", voltage, "volts through it.", end=' ') ... print("E's", state, "!") ... >>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} >>> parrot(**d) -- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised ! .. _tut-lambda: Lambda Expressions ------------------ Small anonymous functions can be created with the :keyword:`lambda` keyword. This function returns the sum of its two arguments: ``lambda a, b: a+b``. Lambda functions can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda functions can reference variables from the containing scope:: >>> def make_incrementor(n): ... return lambda x: x + n ... >>> f = make_incrementor(42) >>> f(0) 42 >>> f(1) 43 The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:: >>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')] >>> pairs.sort(key=lambda pair: pair[1]) >>> pairs [(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')] .. _tut-docstrings: Documentation Strings --------------------- .. index:: single: docstrings single: documentation strings single: strings, documentation Here are some conventions about the content and formatting of documentation strings. The first line should always be a short, concise summary of the object's purpose. For brevity, it should not explicitly state the object's name or type, since these are available by other means (except if the name happens to be a verb describing a function's operation). This line should begin with a capital letter and end with a period. If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object's calling conventions, its side effects, etc. The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line *after* the first line of the string determines the amount of indentation for the entire documentation string. (We can't use the first line since it is generally adjacent to the string's opening quotes so its indentation is not apparent in the string literal.) Whitespace "equivalent" to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally). Here is an example of a multi-line docstring:: >>> def my_function(): ... """Do nothing, but document it. ... ... No, really, it doesn't do anything. ... """ ... pass ... >>> print(my_function.__doc__) Do nothing, but document it. No, really, it doesn't do anything. .. _tut-annotations: Function Annotations -------------------- .. sectionauthor:: Zachary Ware .. index:: pair: function; annotations single: ->; function annotations single: : (colon); function annotations :ref:`Function annotations ` are completely optional metadata information about the types used by user-defined functions (see :pep:`3107` and :pep:`484` for more information). :term:`Annotations ` are stored in the :attr:`__annotations__` attribute of the function as a dictionary and have no effect on any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an expression evaluating to the value of the annotation. Return annotations are defined by a literal ``->``, followed by an expression, between the parameter list and the colon denoting the end of the :keyword:`def` statement. The following example has a required argument, an optional argument, and the return value annotated:: >>> def f(ham: str, eggs: str = 'eggs') -> str: ... print("Annotations:", f.__annotations__) ... print("Arguments:", ham, eggs) ... return ham + ' and ' + eggs ... >>> f('spam') Annotations: {'ham': , 'return': , 'eggs': } Arguments: spam eggs 'spam and eggs' .. _tut-codingstyle: Intermezzo: Coding Style ======================== .. sectionauthor:: Georg Brandl .. index:: pair: coding; style Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about *coding style*. Most languages can be written (or more concise, *formatted*) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that. For Python, :pep:`8` has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you: * Use 4-space indentation, and no tabs. 4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out. * Wrap lines so that they don't exceed 79 characters. This helps users with small displays and makes it possible to have several code files side-by-side on larger displays. * Use blank lines to separate functions and classes, and larger blocks of code inside functions. * When possible, put comments on a line of their own. * Use docstrings. * Use spaces around operators and after commas, but not directly inside bracketing constructs: ``a = f(1, 2) + g(3, 4)``. * Name your classes and functions consistently; the convention is to use ``UpperCamelCase`` for classes and ``lowercase_with_underscores`` for functions and methods. Always use ``self`` as the name for the first method argument (see :ref:`tut-firstclasses` for more on classes and methods). * Don't use fancy encodings if your code is meant to be used in international environments. Python's default, UTF-8, or even plain ASCII work best in any case. * Likewise, don't use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code. .. rubric:: Footnotes .. [#] Actually, *call by object reference* would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list).