socket
— Low-level networking interface¶
Source code: Lib/socket.py
This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows, MacOS, and probably additional platforms.
Note
Some behavior may be platform dependent, since calls are made to the operating system socket APIs.
The Python interface is a straightforward transliteration of the Unix system
call and library interface for sockets to Python’s object-oriented style: the
socket()
function returns a socket object whose methods implement
the various socket system calls. Parameter types are somewhat higher-level than
in the C interface: as with read()
and write()
operations on Python
files, buffer allocation on receive operations is automatic, and buffer length
is implicit on send operations.
See also
- Module
socketserver
Classes that simplify writing network servers.
- Module
ssl
A TLS/SSL wrapper for socket objects.
Socket families¶
Depending on the system and the build options, various socket families are supported by this module.
The address format required by a particular socket object is automatically selected based on the address family specified when the socket object was created. Socket addresses are represented as follows:
The address of an
AF_UNIX
socket bound to a file system node is represented as a string, using the file system encoding and the'surrogateescape'
error handler (see PEP 383). An address in Linux’s abstract namespace is returned as a bytes-like object with an initial null byte; note that sockets in this namespace can communicate with normal file system sockets, so programs intended to run on Linux may need to deal with both types of address. A string or bytes-like object can be used for either type of address when passing it as an argument.Changed in version 3.3: Previously,
AF_UNIX
socket paths were assumed to use UTF-8 encoding.Changed in version 3.5: Writable bytes-like object is now accepted.
A pair
(host, port)
is used for theAF_INET
address family, where host is a string representing either a hostname in internet domain notation like'daring.cwi.nl'
or an IPv4 address like'100.50.200.5'
, and port is an integer.For IPv4 addresses, two special forms are accepted instead of a host address:
''
representsINADDR_ANY
, which is used to bind to all interfaces, and the string'<broadcast>'
representsINADDR_BROADCAST
. This behavior is not compatible with IPv6, therefore, you may want to avoid these if you intend to support IPv6 with your Python programs.
For
AF_INET6
address family, a four-tuple(host, port, flowinfo, scope_id)
is used, where flowinfo and scope_id represent thesin6_flowinfo
andsin6_scope_id
members instruct sockaddr_in6
in C. Forsocket
module methods, flowinfo and scope_id can be omitted just for backward compatibility. Note, however, omission of scope_id can cause problems in manipulating scoped IPv6 addresses.Changed in version 3.7: For multicast addresses (with scope_id meaningful) address may not contain
%scope_id
(orzone id
) part. This information is superfluous and may be safely omitted (recommended).AF_NETLINK
sockets are represented as pairs(pid, groups)
.Linux-only support for TIPC is available using the
AF_TIPC
address family. TIPC is an open, non-IP based networked protocol designed for use in clustered computer environments. Addresses are represented by a tuple, and the fields depend on the address type. The general tuple form is(addr_type, v1, v2, v3 [, scope])
, where:addr_type is one of
TIPC_ADDR_NAMESEQ
,TIPC_ADDR_NAME
, orTIPC_ADDR_ID
.scope is one of
TIPC_ZONE_SCOPE
,TIPC_CLUSTER_SCOPE
, andTIPC_NODE_SCOPE
.If addr_type is
TIPC_ADDR_NAME
, then v1 is the server type, v2 is the port identifier, and v3 should be 0.If addr_type is
TIPC_ADDR_NAMESEQ
, then v1 is the server type, v2 is the lower port number, and v3 is the upper port number.If addr_type is
TIPC_ADDR_ID
, then v1 is the node, v2 is the reference, and v3 should be set to 0.
A tuple
(interface, )
is used for theAF_CAN
address family, where interface is a string representing a network interface name like'can0'
. The network interface name''
can be used to receive packets from all network interfaces of this family.CAN_ISOTP
protocol require a tuple(interface, rx_addr, tx_addr)
where both additional parameters are unsigned long integer that represent a CAN identifier (standard or extended).CAN_J1939
protocol require a tuple(interface, name, pgn, addr)
where additional parameters are 64-bit unsigned integer representing the ECU name, a 32-bit unsigned integer representing the Parameter Group Number (PGN), and an 8-bit integer representing the address.
A string or a tuple
(id, unit)
is used for theSYSPROTO_CONTROL
protocol of thePF_SYSTEM
family. The string is the name of a kernel control using a dynamically-assigned ID. The tuple can be used if ID and unit number of the kernel control are known or if a registered ID is used.New in version 3.3.
AF_BLUETOOTH
supports the following protocols and address formats:BTPROTO_L2CAP
accepts(bdaddr, psm)
wherebdaddr
is the Bluetooth address as a string andpsm
is an integer.BTPROTO_RFCOMM
accepts(bdaddr, channel)
wherebdaddr
is the Bluetooth address as a string andchannel
is an integer.BTPROTO_HCI
accepts(device_id,)
wheredevice_id
is either an integer or a string with the Bluetooth address of the interface. (This depends on your OS; NetBSD and DragonFlyBSD expect a Bluetooth address while everything else expects an integer.)Changed in version 3.2: NetBSD and DragonFlyBSD support added.
BTPROTO_SCO
acceptsbdaddr
wherebdaddr
is abytes
object containing the Bluetooth address in a string format. (ex.b'12:23:34:45:56:67'
) This protocol is not supported under FreeBSD.
AF_ALG
is a Linux-only socket based interface to Kernel cryptography. An algorithm socket is configured with a tuple of two to four elements(type, name [, feat [, mask]])
, where:type is the algorithm type as string, e.g.
aead
,hash
,skcipher
orrng
.name is the algorithm name and operation mode as string, e.g.
sha256
,hmac(sha256)
,cbc(aes)
ordrbg_nopr_ctr_aes256
.feat and mask are unsigned 32bit integers.
Availability: Linux 2.6.38, some algorithm types require more recent Kernels.
New in version 3.6.
AF_VSOCK
allows communication between virtual machines and their hosts. The sockets are represented as a(CID, port)
tuple where the context ID or CID and port are integers.Availability: Linux >= 4.8 QEMU >= 2.8 ESX >= 4.0 ESX Workstation >= 6.5.
New in version 3.7.
AF_PACKET
is a low-level interface directly to network devices. The packets are represented by the tuple(ifname, proto[, pkttype[, hatype[, addr]]])
where:ifname - String specifying the device name.
proto - An in network-byte-order integer specifying the Ethernet protocol number.
pkttype - Optional integer specifying the packet type:
PACKET_HOST
(the default) - Packet addressed to the local host.PACKET_BROADCAST
- Physical-layer broadcast packet.PACKET_MULTICAST
- Packet sent to a physical-layer multicast address.PACKET_OTHERHOST
- Packet to some other host that has been caught by a device driver in promiscuous mode.PACKET_OUTGOING
- Packet originating from the local host that is looped back to a packet socket.
hatype - Optional integer specifying the ARP hardware address type.
addr - Optional bytes-like object specifying the hardware physical address, whose interpretation depends on the device.
AF_QIPCRTR
is a Linux-only socket based interface for communicating with services running on co-processors in Qualcomm platforms. The address family is represented as a(node, port)
tuple where the node and port are non-negative integers.New in version 3.8.
IPPROTO_UDPLITE
is a variant of UDP which allows you to specify what portion of a packet is covered with the checksum. It adds two socket options that you can change.self.setsockopt(IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, length)
will change what portion of outgoing packets are covered by the checksum andself.setsockopt(IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, length)
will filter out packets which cover too little of their data. In both caseslength
should be inrange(8, 2**16, 8)
.Such a socket should be constructed with
socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE)
for IPv4 orsocket(AF_INET6, SOCK_DGRAM, IPPROTO_UDPLITE)
for IPv6.Availability: Linux >= 2.6.20, FreeBSD >= 10.1-RELEASE
New in version 3.9.
If you use a hostname in the host portion of IPv4/v6 socket address, the program may show a nondeterministic behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configuration. For deterministic behavior use a numeric address in host portion.
All errors raise exceptions. The normal exceptions for invalid argument types
and out-of-memory conditions can be raised; starting from Python 3.3, errors
related to socket or address semantics raise OSError
or one of its
subclasses (they used to raise socket.error
).
Non-blocking mode is supported through setblocking()
. A
generalization of this based on timeouts is supported through
settimeout()
.
Module contents¶
The module socket
exports the following elements.
Exceptions¶
- exception socket.herror¶
A subclass of
OSError
, this exception is raised for address-related errors, i.e. for functions that use h_errno in the POSIX C API, includinggethostbyname_ex()
andgethostbyaddr()
. The accompanying value is a pair(h_errno, string)
representing an error returned by a library call. h_errno is a numeric value, while string represents the description of h_errno, as returned by thehstrerror()
C function.Changed in version 3.3: This class was made a subclass of
OSError
.
- exception socket.gaierror¶
A subclass of
OSError
, this exception is raised for address-related errors bygetaddrinfo()
andgetnameinfo()
. The accompanying value is a pair(error, string)
representing an error returned by a library call. string represents the description of error, as returned by thegai_strerror()
C function. The numeric error value will match one of theEAI_*
constants defined in this module.Changed in version 3.3: This class was made a subclass of
OSError
.
- exception socket.timeout¶
A deprecated alias of
TimeoutError
.A subclass of
OSError
, this exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call tosettimeout()
(or implicitly throughsetdefaulttimeout()
). The accompanying value is a string whose value is currently always “timed out”.Changed in version 3.3: This class was made a subclass of
OSError
.Changed in version 3.10: This class was made an alias of
TimeoutError
.
Constants¶
The AF_* and SOCK_* constants are now
AddressFamily
andSocketKind
IntEnum
collections.New in version 3.4.
- socket.AF_UNIX¶
- socket.AF_INET¶
- socket.AF_INET6¶
These constants represent the address (and protocol) families, used for the first argument to
socket()
. If theAF_UNIX
constant is not defined then this protocol is unsupported. More constants may be available depending on the system.
- socket.SOCK_STREAM¶
- socket.SOCK_DGRAM¶
- socket.SOCK_RAW¶
- socket.SOCK_RDM¶
- socket.SOCK_SEQPACKET¶
These constants represent the socket types, used for the second argument to
socket()
. More constants may be available depending on the system. (OnlySOCK_STREAM
andSOCK_DGRAM
appear to be generally useful.)
- socket.SOCK_CLOEXEC¶
- socket.SOCK_NONBLOCK¶
These two constants, if defined, can be combined with the socket types and allow you to set some flags atomically (thus avoiding possible race conditions and the need for separate calls).
See also
Secure File Descriptor Handling for a more thorough explanation.
Availability: Linux >= 2.6.27.
New in version 3.2.
- SO_*
- socket.SOMAXCONN¶
- MSG_*
- SOL_*
- SCM_*
- IPPROTO_*
- IPPORT_*
- INADDR_*
- IP_*
- IPV6_*
- EAI_*
- AI_*
- NI_*
- TCP_*
Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol, are also defined in the socket module. They are generally used in arguments to the
setsockopt()
andgetsockopt()
methods of socket objects. In most cases, only those symbols that are defined in the Unix header files are defined; for a few symbols, default values are provided.Changed in version 3.6:
SO_DOMAIN
,SO_PROTOCOL
,SO_PEERSEC
,SO_PASSSEC
,TCP_USER_TIMEOUT
,TCP_CONGESTION
were added.Changed in version 3.6.5: On Windows,
TCP_FASTOPEN
,TCP_KEEPCNT
appear if run-time Windows supports.Changed in version 3.7:
TCP_NOTSENT_LOWAT
was added.On Windows,
TCP_KEEPIDLE
,TCP_KEEPINTVL
appear if run-time Windows supports.Changed in version 3.10:
IP_RECVTOS
was added. AddedTCP_KEEPALIVE
. On MacOS this constant can be used in the same way thatTCP_KEEPIDLE
is used on Linux.
- socket.AF_CAN¶
- socket.PF_CAN¶
- SOL_CAN_*
- CAN_*
Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
Availability: Linux >= 2.6.25.
New in version 3.3.
- socket.CAN_BCM¶
- CAN_BCM_*
CAN_BCM, in the CAN protocol family, is the broadcast manager (BCM) protocol. Broadcast manager constants, documented in the Linux documentation, are also defined in the socket module.
Availability: Linux >= 2.6.25.
Note
The
CAN_BCM_CAN_FD_FRAME
flag is only available on Linux >= 4.8.New in version 3.4.
- socket.CAN_RAW_FD_FRAMES¶
Enables CAN FD support in a CAN_RAW socket. This is disabled by default. This allows your application to send both CAN and CAN FD frames; however, you must accept both CAN and CAN FD frames when reading from the socket.
This constant is documented in the Linux documentation.
Availability: Linux >= 3.6.
New in version 3.5.
- socket.CAN_RAW_JOIN_FILTERS¶
Joins the applied CAN filters such that only CAN frames that match all given CAN filters are passed to user space.
This constant is documented in the Linux documentation.
Availability: Linux >= 4.1.
New in version 3.9.
- socket.CAN_ISOTP¶
CAN_ISOTP, in the CAN protocol family, is the ISO-TP (ISO 15765-2) protocol. ISO-TP constants, documented in the Linux documentation.
Availability: Linux >= 2.6.25.
New in version 3.7.
- socket.CAN_J1939¶
CAN_J1939, in the CAN protocol family, is the SAE J1939 protocol. J1939 constants, documented in the Linux documentation.
Availability: Linux >= 5.4.
New in version 3.9.
- socket.AF_PACKET¶
- socket.PF_PACKET¶
- PACKET_*
Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
Availability: Linux >= 2.2.
- socket.AF_RDS¶
- socket.PF_RDS¶
- socket.SOL_RDS¶
- RDS_*
Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.
Availability: Linux >= 2.6.30.
New in version 3.3.
- socket.SIO_RCVALL¶
- socket.SIO_KEEPALIVE_VALS¶
- socket.SIO_LOOPBACK_FAST_PATH¶
- RCVALL_*
Constants for Windows’ WSAIoctl(). The constants are used as arguments to the
ioctl()
method of socket objects.Changed in version 3.6:
SIO_LOOPBACK_FAST_PATH
was added.
- TIPC_*
TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for more information.
- socket.AF_ALG¶
- socket.SOL_ALG¶
- ALG_*
Constants for Linux Kernel cryptography.
Availability: Linux >= 2.6.38.
New in version 3.6.
- socket.AF_VSOCK¶
- socket.IOCTL_VM_SOCKETS_GET_LOCAL_CID¶
- VMADDR*
- SO_VM*
Constants for Linux host/guest communication.
Availability: Linux >= 4.8.
New in version 3.7.
- socket.AF_LINK¶
Availability: BSD, OSX.
New in version 3.4.
- socket.has_ipv6¶
This constant contains a boolean value which indicates if IPv6 is supported on this platform.
- socket.BDADDR_ANY¶
- socket.BDADDR_LOCAL¶
These are string constants containing Bluetooth addresses with special meanings. For example,
BDADDR_ANY
can be used to indicate any address when specifying the binding socket withBTPROTO_RFCOMM
.
- socket.HCI_FILTER¶
- socket.HCI_TIME_STAMP¶
- socket.HCI_DATA_DIR¶
For use with
BTPROTO_HCI
.HCI_FILTER
is not available for NetBSD or DragonFlyBSD.HCI_TIME_STAMP
andHCI_DATA_DIR
are not available for FreeBSD, NetBSD, or DragonFlyBSD.
- socket.AF_QIPCRTR¶
Constant for Qualcomm’s IPC router protocol, used to communicate with service providing remote processors.
Availability: Linux >= 4.7.
Functions¶
Creating sockets¶
The following functions all create socket objects.
- socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None)¶
Create a new socket using the given address family, socket type and protocol number. The address family should be
AF_INET
(the default),AF_INET6
,AF_UNIX
,AF_CAN
,AF_PACKET
, orAF_RDS
. The socket type should beSOCK_STREAM
(the default),SOCK_DGRAM
,SOCK_RAW
or perhaps one of the otherSOCK_
constants. The protocol number is usually zero and may be omitted or in the case where the address family isAF_CAN
the protocol should be one ofCAN_RAW
,CAN_BCM
,CAN_ISOTP
orCAN_J1939
.If fileno is specified, the values for family, type, and proto are auto-detected from the specified file descriptor. Auto-detection can be overruled by calling the function with explicit family, type, or proto arguments. This only affects how Python represents e.g. the return value of
socket.getpeername()
but not the actual OS resource. Unlikesocket.fromfd()
, fileno will return the same socket and not a duplicate. This may help close a detached socket usingsocket.close()
.The newly created socket is non-inheritable.
Raises an auditing event
socket.__new__
with argumentsself
,family
,type
,protocol
.Changed in version 3.3: The AF_CAN family was added. The AF_RDS family was added.
Changed in version 3.4: The CAN_BCM protocol was added.
Changed in version 3.4: The returned socket is now non-inheritable.
Changed in version 3.7: The CAN_ISOTP protocol was added.
Changed in version 3.7: When
SOCK_NONBLOCK
orSOCK_CLOEXEC
bit flags are applied to type they are cleared, andsocket.type
will not reflect them. They are still passed to the underlying system socket() call. Therefore,sock = socket.socket( socket.AF_INET, socket.SOCK_STREAM | socket.SOCK_NONBLOCK)
will still create a non-blocking socket on OSes that support
SOCK_NONBLOCK
, butsock.type
will be set tosocket.SOCK_STREAM
.Changed in version 3.9: The CAN_J1939 protocol was added.
Changed in version 3.10: The IPPROTO_MPTCP protocol was added.
- socket.socketpair([family[, type[, proto]]])¶
Build a pair of connected socket objects using the given address family, socket type, and protocol number. Address family, socket type, and protocol number are as for the
socket()
function above. The default family isAF_UNIX
if defined on the platform; otherwise, the default isAF_INET
.The newly created sockets are non-inheritable.
Changed in version 3.2: The returned socket objects now support the whole socket API, rather than a subset.
Changed in version 3.4: The returned sockets are now non-inheritable.
Changed in version 3.5: Windows support added.
- socket.create_connection(address[, timeout[, source_address]])¶
Connect to a TCP service listening on the internet address (a 2-tuple
(host, port)
), and return the socket object. This is a higher-level function thansocket.connect()
: if host is a non-numeric hostname, it will try to resolve it for bothAF_INET
andAF_INET6
, and then try to connect to all possible addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.Passing the optional timeout parameter will set the timeout on the socket instance before attempting to connect. If no timeout is supplied, the global default timeout setting returned by
getdefaulttimeout()
is used.If supplied, source_address must be a 2-tuple
(host, port)
for the socket to bind to as its source address before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.Changed in version 3.2: source_address was added.
- socket.create_server(address, *, family=AF_INET, backlog=None, reuse_port=False, dualstack_ipv6=False)¶
Convenience function which creates a TCP socket bound to address (a 2-tuple
(host, port)
) and return the socket object.family should be either
AF_INET
orAF_INET6
. backlog is the queue size passed tosocket.listen()
; when0
a default reasonable value is chosen. reuse_port dictates whether to set theSO_REUSEPORT
socket option.If dualstack_ipv6 is true and the platform supports it the socket will be able to accept both IPv4 and IPv6 connections, else it will raise
ValueError
. Most POSIX platforms and Windows are supposed to support this functionality. When this functionality is enabled the address returned bysocket.getpeername()
when an IPv4 connection occurs will be an IPv6 address represented as an IPv4-mapped IPv6 address. If dualstack_ipv6 is false it will explicitly disable this functionality on platforms that enable it by default (e.g. Linux). This parameter can be used in conjunction withhas_dualstack_ipv6()
:import socket addr = ("", 8080) # all interfaces, port 8080 if socket.has_dualstack_ipv6(): s = socket.create_server(addr, family=socket.AF_INET6, dualstack_ipv6=True) else: s = socket.create_server(addr)
Note
On POSIX platforms the
SO_REUSEADDR
socket option is set in order to immediately reuse previous sockets which were bound on the same address and remained in TIME_WAIT state.New in version 3.8.
- socket.has_dualstack_ipv6()¶
Return
True
if the platform supports creating a TCP socket which can handle both IPv4 and IPv6 connections.New in version 3.8.
- socket.fromfd(fd, family, type, proto=0)¶
Duplicate the file descriptor fd (an integer as returned by a file object’s
fileno()
method) and build a socket object from the result. Address family, socket type and protocol number are as for thesocket()
function above. The file descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket passed to a program as standard input or output (such as a server started by the Unix inet daemon). The socket is assumed to be in blocking mode.The newly created socket is non-inheritable.
Changed in version 3.4: The returned socket is now non-inheritable.
Instantiate a socket from data obtained from the
socket.share()
method. The socket is assumed to be in blocking mode.Availability: Windows.
New in version 3.3.
- socket.SocketType¶
This is a Python type object that represents the socket object type. It is the same as
type(socket(...))
.
Other functions¶
The socket
module also offers various network-related services:
- socket.close(fd)¶
Close a socket file descriptor. This is like
os.close()
, but for sockets. On some platforms (most noticeable Windows)os.close()
does not work for socket file descriptors.New in version 3.7.
- socket.getaddrinfo(host, port, family=0, type=0, proto=0, flags=0)¶
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating a socket connected to that service. host is a domain name, a string representation of an IPv4/v6 address or
None
. port is a string service name such as'http'
, a numeric port number orNone
. By passingNone
as the value of host and port, you can passNULL
to the underlying C API.The family, type and proto arguments can be optionally specified in order to narrow the list of addresses returned. Passing zero as a value for each of these arguments selects the full range of results. The flags argument can be one or several of the
AI_*
constants, and will influence how results are computed and returned. For example,AI_NUMERICHOST
will disable domain name resolution and will raise an error if host is a domain name.The function returns a list of 5-tuples with the following structure:
(family, type, proto, canonname, sockaddr)
In these tuples, family, type, proto are all integers and are meant to be passed to the
socket()
function. canonname will be a string representing the canonical name of the host ifAI_CANONNAME
is part of the flags argument; else canonname will be empty. sockaddr is a tuple describing a socket address, whose format depends on the returned family (a(address, port)
2-tuple forAF_INET
, a(address, port, flowinfo, scope_id)
4-tuple forAF_INET6
), and is meant to be passed to thesocket.connect()
method.Raises an auditing event
socket.getaddrinfo
with argumentshost
,port
,family
,type
,protocol
.The following example fetches address information for a hypothetical TCP connection to
example.org
on port 80 (results may differ on your system if IPv6 isn’t enabled):>>> socket.getaddrinfo("example.org", 80, proto=socket.IPPROTO_TCP) [(socket.AF_INET6, socket.SOCK_STREAM, 6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)), (socket.AF_INET, socket.SOCK_STREAM, 6, '', ('93.184.216.34', 80))]
Changed in version 3.2: parameters can now be passed using keyword arguments.
Changed in version 3.7: for IPv6 multicast addresses, string representing an address will not contain
%scope_id
part.
- socket.getfqdn([name])¶
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local host. To find the fully qualified name, the hostname returned by
gethostbyaddr()
is checked, followed by aliases for the host, if available. The first name which includes a period is selected. In case no fully qualified domain name is available, the hostname as returned bygethostname()
is returned.
- socket.gethostbyname(hostname)¶
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as
'100.50.200.5'
. If the host name is an IPv4 address itself it is returned unchanged. Seegethostbyname_ex()
for a more complete interface.gethostbyname()
does not support IPv6 name resolution, andgetaddrinfo()
should be used instead for IPv4/v6 dual stack support.Raises an auditing event
socket.gethostbyname
with argumenthostname
.
- socket.gethostbyname_ex(hostname)¶
Translate a host name to IPv4 address format, extended interface. Return a triple
(hostname, aliaslist, ipaddrlist)
where hostname is the primary host name responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same address, and ipaddrlist is a list of IPv4 addresses for the same interface on the same host (often but not always a single address).gethostbyname_ex()
does not support IPv6 name resolution, andgetaddrinfo()
should be used instead for IPv4/v6 dual stack support.Raises an auditing event
socket.gethostbyname
with argumenthostname
.
- socket.gethostname()¶
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
Raises an auditing event
socket.gethostname
with no arguments.Note:
gethostname()
doesn’t always return the fully qualified domain name; usegetfqdn()
for that.
- socket.gethostbyaddr(ip_address)¶
Return a triple
(hostname, aliaslist, ipaddrlist)
where hostname is the primary host name responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same address, and ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most likely containing only a single address). To find the fully qualified domain name, use the functiongetfqdn()
.gethostbyaddr()
supports both IPv4 and IPv6.Raises an auditing event
socket.gethostbyaddr
with argumentip_address
.
- socket.getnameinfo(sockaddr, flags)¶
Translate a socket address sockaddr into a 2-tuple
(host, port)
. Depending on the settings of flags, the result can contain a fully-qualified domain name or numeric address representation in host. Similarly, port can contain a string port name or a numeric port number.For IPv6 addresses,
%scope_id
is appended to the host part if sockaddr contains meaningful scope_id. Usually this happens for multicast addresses.For more information about flags you can consult getnameinfo(3).
Raises an auditing event
socket.getnameinfo
with argumentsockaddr
.
- socket.getprotobyname(protocolname)¶
Translate an internet protocol name (for example,
'icmp'
) to a constant suitable for passing as the (optional) third argument to thesocket()
function. This is usually only needed for sockets opened in “raw” mode (SOCK_RAW
); for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.
- socket.getservbyname(servicename[, protocolname])¶
Translate an internet service name and protocol name to a port number for that service. The optional protocol name, if given, should be
'tcp'
or'udp'
, otherwise any protocol will match.Raises an auditing event
socket.getservbyname
with argumentsservicename
,protocolname
.
- socket.getservbyport(port[, protocolname])¶
Translate an internet port number and protocol name to a service name for that service. The optional protocol name, if given, should be
'tcp'
or'udp'
, otherwise any protocol will match.Raises an auditing event
socket.getservbyport
with argumentsport
,protocolname
.
- socket.ntohl(x)¶
Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.
- socket.ntohs(x)¶
Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.
Changed in version 3.10: Raises
OverflowError
if x does not fit in a 16-bit unsigned integer.
- socket.htonl(x)¶
Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.
- socket.htons(x)¶
Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.
Changed in version 3.10: Raises
OverflowError
if x does not fit in a 16-bit unsigned integer.
- socket.inet_aton(ip_string)¶
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed binary format, as a bytes object four characters in length. This is useful when conversing with a program that uses the standard C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed binary this function returns.
inet_aton()
also accepts strings with less than three dots; see the Unix manual page inet(3) for details.If the IPv4 address string passed to this function is invalid,
OSError
will be raised. Note that exactly what is valid depends on the underlying C implementation ofinet_aton()
.inet_aton()
does not support IPv6, andinet_pton()
should be used instead for IPv4/v6 dual stack support.
- socket.inet_ntoa(packed_ip)¶
Convert a 32-bit packed IPv4 address (a bytes-like object four bytes in length) to its standard dotted-quad string representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that uses the standard C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed binary data this function takes as an argument.
If the byte sequence passed to this function is not exactly 4 bytes in length,
OSError
will be raised.inet_ntoa()
does not support IPv6, andinet_ntop()
should be used instead for IPv4/v6 dual stack support.Changed in version 3.5: Writable bytes-like object is now accepted.
- socket.inet_pton(address_family, ip_string)¶
Convert an IP address from its family-specific string format to a packed, binary format.
inet_pton()
is useful when a library or network protocol calls for an object of type struct in_addr (similar toinet_aton()
) or struct in6_addr.Supported values for address_family are currently
AF_INET
andAF_INET6
. If the IP address string ip_string is invalid,OSError
will be raised. Note that exactly what is valid depends on both the value of address_family and the underlying implementation ofinet_pton()
.Availability: Unix (maybe not all platforms), Windows.
Changed in version 3.4: Windows support added
- socket.inet_ntop(address_family, packed_ip)¶
Convert a packed IP address (a bytes-like object of some number of bytes) to its standard, family-specific string representation (for example,
'7.10.0.5'
or'5aef:2b::8'
).inet_ntop()
is useful when a library or network protocol returns an object of type struct in_addr (similar toinet_ntoa()
) or struct in6_addr.Supported values for address_family are currently
AF_INET
andAF_INET6
. If the bytes object packed_ip is not the correct length for the specified address family,ValueError
will be raised.OSError
is raised for errors from the call toinet_ntop()
.Availability: Unix (maybe not all platforms), Windows.
Changed in version 3.4: Windows support added
Changed in version 3.5: Writable bytes-like object is now accepted.
- socket.CMSG_LEN(length)¶
Return the total length, without trailing padding, of an ancillary data item with associated data of the given length. This value can often be used as the buffer size for
recvmsg()
to receive a single item of ancillary data, but RFC 3542 requires portable applications to useCMSG_SPACE()
and thus include space for padding, even when the item will be the last in the buffer. RaisesOverflowError
if length is outside the permissible range of values.Availability: most Unix platforms, possibly others.
New in version 3.3.
- socket.CMSG_SPACE(length)¶
Return the buffer size needed for
recvmsg()
to receive an ancillary data item with associated data of the given length, along with any trailing padding. The buffer space needed to receive multiple items is the sum of theCMSG_SPACE()
values for their associated data lengths. RaisesOverflowError
if length is outside the permissible range of values.Note that some systems might support ancillary data without providing this function. Also note that setting the buffer size using the results of this function may not precisely limit the amount of ancillary data that can be received, since additional data may be able to fit into the padding area.
Availability: most Unix platforms, possibly others.
New in version 3.3.
- socket.getdefaulttimeout()¶
Return the default timeout in seconds (float) for new socket objects. A value of
None
indicates that new socket objects have no timeout. When the socket module is first imported, the default isNone
.
- socket.setdefaulttimeout(timeout)¶
Set the default timeout in seconds (float) for new socket objects. When the socket module is first imported, the default is
None
. Seesettimeout()
for possible values and their respective meanings.
- socket.sethostname(name)¶
Set the machine’s hostname to name. This will raise an
OSError
if you don’t have enough rights.Raises an auditing event
socket.sethostname
with argumentname
.Availability: Unix.
New in version 3.3.
- socket.if_nameindex()¶
Return a list of network interface information (index int, name string) tuples.
OSError
if the system call fails.Availability: Unix, Windows.
New in version 3.3.
Changed in version 3.8: Windows support was added.
Note
On Windows network interfaces have different names in different contexts (all names are examples):
UUID:
{FB605B73-AAC2-49A6-9A2F-25416AEA0573}
name:
ethernet_32770
friendly name:
vEthernet (nat)
description:
Hyper-V Virtual Ethernet Adapter
This function returns names of the second form from the list,
ethernet_32770
in this example case.
- socket.if_nametoindex(if_name)¶
Return a network interface index number corresponding to an interface name.
OSError
if no interface with the given name exists.Availability: Unix, Windows.
New in version 3.3.
Changed in version 3.8: Windows support was added.
See also
“Interface name” is a name as documented in
if_nameindex()
.
- socket.if_indextoname(if_index)¶
Return a network interface name corresponding to an interface index number.
OSError
if no interface with the given index exists.Availability: Unix, Windows.
New in version 3.3.
Changed in version 3.8: Windows support was added.
See also
“Interface name” is a name as documented in
if_nameindex()
.
- socket.send_fds(sock, buffers, fds[, flags[, address]])¶
Send the list of file descriptors fds over an
AF_UNIX
socket sock. The fds parameter is a sequence of file descriptors. Consultsendmsg()
for the documentation of these parameters.Availability: Unix supporting
sendmsg()
andSCM_RIGHTS
mechanism.New in version 3.9.
- socket.recv_fds(sock, bufsize, maxfds[, flags])¶
Receive up to maxfds file descriptors from an
AF_UNIX
socket sock. Return(msg, list(fds), flags, addr)
. Consultrecvmsg()
for the documentation of these parameters.Availability: Unix supporting
recvmsg()
andSCM_RIGHTS
mechanism.New in version 3.9.
Note
Any truncated integers at the end of the list of file descriptors.
Socket Objects¶
Socket objects have the following methods. Except for
makefile()
, these correspond to Unix system calls applicable
to sockets.
Changed in version 3.2: Support for the context manager protocol was added. Exiting the
context manager is equivalent to calling close()
.
- socket.accept()¶
Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair
(conn, address)
where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection.The newly created socket is non-inheritable.
Changed in version 3.4: The socket is now non-inheritable.
Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.bind(address)¶
Bind the socket to address. The socket must not already be bound. (The format of address depends on the address family — see above.)
Raises an auditing event
socket.bind
with argumentsself
,address
.
- socket.close()¶
Mark the socket closed. The underlying system resource (e.g. a file descriptor) is also closed when all file objects from
makefile()
are closed. Once that happens, all future operations on the socket object will fail. The remote end will receive no more data (after queued data is flushed).Sockets are automatically closed when they are garbage-collected, but it is recommended to
close()
them explicitly, or to use awith
statement around them.Changed in version 3.6:
OSError
is now raised if an error occurs when the underlyingclose()
call is made.Note
close()
releases the resource associated with a connection but does not necessarily close the connection immediately. If you want to close the connection in a timely fashion, callshutdown()
beforeclose()
.
- socket.connect(address)¶
Connect to a remote socket at address. (The format of address depends on the address family — see above.)
If the connection is interrupted by a signal, the method waits until the connection completes, or raise a
TimeoutError
on timeout, if the signal handler doesn’t raise an exception and the socket is blocking or has a timeout. For non-blocking sockets, the method raises anInterruptedError
exception if the connection is interrupted by a signal (or the exception raised by the signal handler).Raises an auditing event
socket.connect
with argumentsself
,address
.Changed in version 3.5: The method now waits until the connection completes instead of raising an
InterruptedError
exception if the connection is interrupted by a signal, the signal handler doesn’t raise an exception and the socket is blocking or has a timeout (see the PEP 475 for the rationale).
- socket.connect_ex(address)¶
Like
connect(address)
, but return an error indicator instead of raising an exception for errors returned by the C-levelconnect()
call (other problems, such as “host not found,” can still raise exceptions). The error indicator is0
if the operation succeeded, otherwise the value of theerrno
variable. This is useful to support, for example, asynchronous connects.Raises an auditing event
socket.connect
with argumentsself
,address
.
- socket.detach()¶
Put the socket object into closed state without actually closing the underlying file descriptor. The file descriptor is returned, and can be reused for other purposes.
New in version 3.2.
- socket.dup()¶
Duplicate the socket.
The newly created socket is non-inheritable.
Changed in version 3.4: The socket is now non-inheritable.
- socket.fileno()¶
Return the socket’s file descriptor (a small integer), or -1 on failure. This is useful with
select.select()
.Under Windows the small integer returned by this method cannot be used where a file descriptor can be used (such as
os.fdopen()
). Unix does not have this limitation.
- socket.get_inheritable()¶
Get the inheritable flag of the socket’s file descriptor or socket’s handle:
True
if the socket can be inherited in child processes,False
if it cannot.New in version 3.4.
- socket.getpeername()¶
Return the remote address to which the socket is connected. This is useful to find out the port number of a remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family — see above.) On some systems this function is not supported.
- socket.getsockname()¶
Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance. (The format of the address returned depends on the address family — see above.)
- socket.getsockopt(level, optname[, buflen])¶
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed symbolic constants (
SO_*
etc.) are defined in this module. If buflen is absent, an integer option is assumed and its integer value is returned by the function. If buflen is present, it specifies the maximum length of the buffer used to receive the option in, and this buffer is returned as a bytes object. It is up to the caller to decode the contents of the buffer (see the optional built-in modulestruct
for a way to decode C structures encoded as byte strings).
- socket.getblocking()¶
Return
True
if socket is in blocking mode,False
if in non-blocking.This is equivalent to checking
socket.gettimeout() == 0
.New in version 3.7.
- socket.gettimeout()¶
Return the timeout in seconds (float) associated with socket operations, or
None
if no timeout is set. This reflects the last call tosetblocking()
orsettimeout()
.
- socket.ioctl(control, option)¶
- Platform
Windows
The
ioctl()
method is a limited interface to the WSAIoctl system interface. Please refer to the Win32 documentation for more information.On other platforms, the generic
fcntl.fcntl()
andfcntl.ioctl()
functions may be used; they accept a socket object as their first argument.Currently only the following control codes are supported:
SIO_RCVALL
,SIO_KEEPALIVE_VALS
, andSIO_LOOPBACK_FAST_PATH
.Changed in version 3.6:
SIO_LOOPBACK_FAST_PATH
was added.
- socket.listen([backlog])¶
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it is lower, it is set to 0); it specifies the number of unaccepted connections that the system will allow before refusing new connections. If not specified, a default reasonable value is chosen.
Changed in version 3.5: The backlog parameter is now optional.
- socket.makefile(mode='r', buffering=None, *, encoding=None, errors=None, newline=None)¶
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile()
. These arguments are interpreted the same way as by the built-inopen()
function, except the only supported mode values are'r'
(default),'w'
and'b'
.The socket must be in blocking mode; it can have a timeout, but the file object’s internal buffer may end up in an inconsistent state if a timeout occurs.
Closing the file object returned by
makefile()
won’t close the original socket unless all other file objects have been closed andsocket.close()
has been called on the socket object.Note
On Windows, the file-like object created by
makefile()
cannot be used where a file object with a file descriptor is expected, such as the stream arguments ofsubprocess.Popen()
.
- socket.recv(bufsize[, flags])¶
Receive data from the socket. The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by bufsize. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero.
Note
For best match with hardware and network realities, the value of bufsize should be a relatively small power of 2, for example, 4096.
Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.recvfrom(bufsize[, flags])¶
Receive data from the socket. The return value is a pair
(bytes, address)
where bytes is a bytes object representing the data received and address is the address of the socket sending the data. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of address depends on the address family — see above.)Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).Changed in version 3.7: For multicast IPv6 address, first item of address does not contain
%scope_id
part anymore. In order to get full IPv6 address usegetnameinfo()
.
- socket.recvmsg(bufsize[, ancbufsize[, flags]])¶
Receive normal data (up to bufsize bytes) and ancillary data from the socket. The ancbufsize argument sets the size in bytes of the internal buffer used to receive the ancillary data; it defaults to 0, meaning that no ancillary data will be received. Appropriate buffer sizes for ancillary data can be calculated using
CMSG_SPACE()
orCMSG_LEN()
, and items which do not fit into the buffer might be truncated or discarded. The flags argument defaults to 0 and has the same meaning as forrecv()
.The return value is a 4-tuple:
(data, ancdata, msg_flags, address)
. The data item is abytes
object holding the non-ancillary data received. The ancdata item is a list of zero or more tuples(cmsg_level, cmsg_type, cmsg_data)
representing the ancillary data (control messages) received: cmsg_level and cmsg_type are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data is abytes
object holding the associated data. The msg_flags item is the bitwise OR of various flags indicating conditions on the received message; see your system documentation for details. If the receiving socket is unconnected, address is the address of the sending socket, if available; otherwise, its value is unspecified.On some systems,
sendmsg()
andrecvmsg()
can be used to pass file descriptors between processes over anAF_UNIX
socket. When this facility is used (it is often restricted toSOCK_STREAM
sockets),recvmsg()
will return, in its ancillary data, items of the form(socket.SOL_SOCKET, socket.SCM_RIGHTS, fds)
, where fds is abytes
object representing the new file descriptors as a binary array of the native C int type. Ifrecvmsg()
raises an exception after the system call returns, it will first attempt to close any file descriptors received via this mechanism.Some systems do not indicate the truncated length of ancillary data items which have been only partially received. If an item appears to extend beyond the end of the buffer,
recvmsg()
will issue aRuntimeWarning
, and will return the part of it which is inside the buffer provided it has not been truncated before the start of its associated data.On systems which support the
SCM_RIGHTS
mechanism, the following function will receive up to maxfds file descriptors, returning the message data and a list containing the descriptors (while ignoring unexpected conditions such as unrelated control messages being received). See alsosendmsg()
.import socket, array def recv_fds(sock, msglen, maxfds): fds = array.array("i") # Array of ints msg, ancdata, flags, addr = sock.recvmsg(msglen, socket.CMSG_LEN(maxfds * fds.itemsize)) for cmsg_level, cmsg_type, cmsg_data in ancdata: if cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS: # Append data, ignoring any truncated integers at the end. fds.frombytes(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)]) return msg, list(fds)
Availability: most Unix platforms, possibly others.
New in version 3.3.
Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.recvmsg_into(buffers[, ancbufsize[, flags]])¶
Receive normal data and ancillary data from the socket, behaving as
recvmsg()
would, but scatter the non-ancillary data into a series of buffers instead of returning a new bytes object. The buffers argument must be an iterable of objects that export writable buffers (e.g.bytearray
objects); these will be filled with successive chunks of the non-ancillary data until it has all been written or there are no more buffers. The operating system may set a limit (sysconf()
valueSC_IOV_MAX
) on the number of buffers that can be used. The ancbufsize and flags arguments have the same meaning as forrecvmsg()
.The return value is a 4-tuple:
(nbytes, ancdata, msg_flags, address)
, where nbytes is the total number of bytes of non-ancillary data written into the buffers, and ancdata, msg_flags and address are the same as forrecvmsg()
.Example:
>>> import socket >>> s1, s2 = socket.socketpair() >>> b1 = bytearray(b'----') >>> b2 = bytearray(b'0123456789') >>> b3 = bytearray(b'--------------') >>> s1.send(b'Mary had a little lamb') 22 >>> s2.recvmsg_into([b1, memoryview(b2)[2:9], b3]) (22, [], 0, None) >>> [b1, b2, b3] [bytearray(b'Mary'), bytearray(b'01 had a 9'), bytearray(b'little lamb---')]
Availability: most Unix platforms, possibly others.
New in version 3.3.
- socket.recvfrom_into(buffer[, nbytes[, flags]])¶
Receive data from the socket, writing it into buffer instead of creating a new bytestring. The return value is a pair
(nbytes, address)
where nbytes is the number of bytes received and address is the address of the socket sending the data. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of address depends on the address family — see above.)
- socket.recv_into(buffer[, nbytes[, flags]])¶
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new bytestring. If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns the number of bytes received. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero.
- socket.send(bytes[, flags])¶
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for
recv()
above. Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data. For further information on this topic, consult the Socket 编程开胃菜.Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.sendall(bytes[, flags])¶
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for
recv()
above. Unlikesend()
, this method continues to send data from bytes until either all data has been sent or an error occurs.None
is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully sent.Changed in version 3.5: The socket timeout is no more reset each time data is sent successfully. The socket timeout is now the maximum total duration to send all data.
Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.sendto(bytes, address)¶
- socket.sendto(bytes, flags, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by address. The optional flags argument has the same meaning as for
recv()
above. Return the number of bytes sent. (The format of address depends on the address family — see above.)Raises an auditing event
socket.sendto
with argumentsself
,address
.Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.sendmsg(buffers[, ancdata[, flags[, address]]])¶
Send normal and ancillary data to the socket, gathering the non-ancillary data from a series of buffers and concatenating it into a single message. The buffers argument specifies the non-ancillary data as an iterable of bytes-like objects (e.g.
bytes
objects); the operating system may set a limit (sysconf()
valueSC_IOV_MAX
) on the number of buffers that can be used. The ancdata argument specifies the ancillary data (control messages) as an iterable of zero or more tuples(cmsg_level, cmsg_type, cmsg_data)
, where cmsg_level and cmsg_type are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data is a bytes-like object holding the associated data. Note that some systems (in particular, systems withoutCMSG_SPACE()
) might support sending only one control message per call. The flags argument defaults to 0 and has the same meaning as forsend()
. If address is supplied and notNone
, it sets a destination address for the message. The return value is the number of bytes of non-ancillary data sent.The following function sends the list of file descriptors fds over an
AF_UNIX
socket, on systems which support theSCM_RIGHTS
mechanism. See alsorecvmsg()
.import socket, array def send_fds(sock, msg, fds): return sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, array.array("i", fds))])
Availability: most Unix platforms, possibly others.
Raises an auditing event
socket.sendmsg
with argumentsself
,address
.New in version 3.3.
Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an
InterruptedError
exception (see PEP 475 for the rationale).
- socket.sendmsg_afalg([msg, ]*, op[, iv[, assoclen[, flags]]])¶
Specialized version of
sendmsg()
forAF_ALG
socket. Set mode, IV, AEAD associated data length and flags forAF_ALG
socket.Availability: Linux >= 2.6.38.
New in version 3.6.
- socket.sendfile(file, offset=0, count=None)¶
Send a file until EOF is reached by using high-performance
os.sendfile
and return the total number of bytes which were sent. file must be a regular file object opened in binary mode. Ifos.sendfile
is not available (e.g. Windows) or file is not a regular filesend()
will be used instead. offset tells from where to start reading the file. If specified, count is the total number of bytes to transmit as opposed to sending the file until EOF is reached. File position is updated on return or also in case of error in which casefile.tell()
can be used to figure out the number of bytes which were sent. The socket must be ofSOCK_STREAM
type. Non-blocking sockets are not supported.New in version 3.5.
- socket.set_inheritable(inheritable)¶
Set the inheritable flag of the socket’s file descriptor or socket’s handle.
New in version 3.4.
- socket.setblocking(flag)¶
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking mode.
This method is a shorthand for certain
settimeout()
calls:sock.setblocking(True)
is equivalent tosock.settimeout(None)
sock.setblocking(False)
is equivalent tosock.settimeout(0.0)
Changed in version 3.7: The method no longer applies
SOCK_NONBLOCK
flag onsocket.type
.
- socket.settimeout(value)¶
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number expressing seconds, or
None
. If a non-zero value is given, subsequent socket operations will raise atimeout
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket is put in non-blocking mode. IfNone
is given, the socket is put in blocking mode.For further information, please consult the notes on socket timeouts.
Changed in version 3.7: The method no longer toggles
SOCK_NONBLOCK
flag onsocket.type
.
- socket.setsockopt(level, optname, value: buffer)
- socket.setsockopt(level, optname, None, optlen: int)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed symbolic constants are defined in the
socket
module (SO_*
etc.). The value can be an integer,None
or a bytes-like object representing a buffer. In the later case it is up to the caller to ensure that the bytestring contains the proper bits (see the optional built-in modulestruct
for a way to encode C structures as bytestrings). When value is set toNone
, optlen argument is required. It’s equivalent to callsetsockopt()
C function withoptval=NULL
andoptlen=optlen
.Changed in version 3.5: Writable bytes-like object is now accepted.
Changed in version 3.6: setsockopt(level, optname, None, optlen: int) form added.
- socket.shutdown(how)¶
Shut down one or both halves of the connection. If how is
SHUT_RD
, further receives are disallowed. If how isSHUT_WR
, further sends are disallowed. If how isSHUT_RDWR
, further sends and receives are disallowed.
Duplicate a socket and prepare it for sharing with a target process. The target process must be provided with process_id. The resulting bytes object can then be passed to the target process using some form of interprocess communication and the socket can be recreated there using
fromshare()
. Once this method has been called, it is safe to close the socket since the operating system has already duplicated it for the target process.Availability: Windows.
New in version 3.3.
Note that there are no methods read()
or write()
; use
recv()
and send()
without flags argument instead.
Socket objects also have these (read-only) attributes that correspond to the
values given to the socket
constructor.
- socket.family¶
The socket family.
- socket.type¶
The socket type.
- socket.proto¶
The socket protocol.
Notes on socket timeouts¶
A socket object can be in one of three modes: blocking, non-blocking, or
timeout. Sockets are by default always created in blocking mode, but this
can be changed by calling setdefaulttimeout()
.
In blocking mode, operations block until complete or the system returns an error (such as connection timed out).
In non-blocking mode, operations fail (with an error that is unfortunately system-dependent) if they cannot be completed immediately: functions from the
select
can be used to know when and whether a socket is available for reading or writing.In timeout mode, operations fail if they cannot be completed within the timeout specified for the socket (they raise a
timeout
exception) or if the system returns an error.
Note
At the operating system level, sockets in timeout mode are internally set
in non-blocking mode. Also, the blocking and timeout modes are shared between
file descriptors and socket objects that refer to the same network endpoint.
This implementation detail can have visible consequences if e.g. you decide
to use the fileno()
of a socket.
Timeouts and the connect
method¶
The connect()
operation is also subject to the timeout
setting, and in general it is recommended to call settimeout()
before calling connect()
or pass a timeout parameter to
create_connection()
. However, the system network stack may also
return a connection timeout error of its own regardless of any Python socket
timeout setting.
Timeouts and the accept
method¶
If getdefaulttimeout()
is not None
, sockets returned by
the accept()
method inherit that timeout. Otherwise, the
behaviour depends on settings of the listening socket:
if the listening socket is in blocking mode or in timeout mode, the socket returned by
accept()
is in blocking mode;if the listening socket is in non-blocking mode, whether the socket returned by
accept()
is in blocking or non-blocking mode is operating system-dependent. If you want to ensure cross-platform behaviour, it is recommended you manually override this setting.
Example¶
Here are four minimal example programs using the TCP/IP protocol: a server that
echoes all data that it receives back (servicing only one client), and a client
using it. Note that a server must perform the sequence socket()
,
bind()
, listen()
, accept()
(possibly
repeating the accept()
to service more than one client), while a
client only needs the sequence socket()
, connect()
. Also
note that the server does not sendall()
/recv()
on
the socket it is listening on but on the new socket returned by
accept()
.
The first two examples support IPv4 only.
# Echo server program
import socket
HOST = '' # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
with conn:
print('Connected by', addr)
while True:
data = conn.recv(1024)
if not data: break
conn.sendall(data)
# Echo client program
import socket
HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.connect((HOST, PORT))
s.sendall(b'Hello, world')
data = s.recv(1024)
print('Received', repr(data))
The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will take precedence and the server may not accept IPv4 traffic. The client side will try to connect to the all addresses returned as a result of the name resolution, and sends traffic to the first one connected successfully.
# Echo server program
import socket
import sys
HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,
socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
af, socktype, proto, canonname, sa = res
try:
s = socket.socket(af, socktype, proto)
except OSError as msg:
s = None
continue
try:
s.bind(sa)
s.listen(1)
except OSError as msg:
s.close()
s = None
continue
break
if s is None:
print('could not open socket')
sys.exit(1)
conn, addr = s.accept()
with conn:
print('Connected by', addr)
while True:
data = conn.recv(1024)
if not data: break
conn.send(data)
# Echo client program
import socket
import sys
HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):
af, socktype, proto, canonname, sa = res
try:
s = socket.socket(af, socktype, proto)
except OSError as msg:
s = None
continue
try:
s.connect(sa)
except OSError as msg:
s.close()
s = None
continue
break
if s is None:
print('could not open socket')
sys.exit(1)
with s:
s.sendall(b'Hello, world')
data = s.recv(1024)
print('Received', repr(data))
The next example shows how to write a very simple network sniffer with raw sockets on Windows. The example requires administrator privileges to modify the interface:
import socket
# the public network interface
HOST = socket.gethostbyname(socket.gethostname())
# create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))
# Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)
# receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
# receive a package
print(s.recvfrom(65565))
# disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
The next example shows how to use the socket interface to communicate to a CAN network using the raw socket protocol. To use CAN with the broadcast manager protocol instead, open a socket with:
socket.socket(socket.AF_CAN, socket.SOCK_DGRAM, socket.CAN_BCM)
After binding (CAN_RAW
) or connecting (CAN_BCM
) the socket, you
can use the socket.send()
, and the socket.recv()
operations (and
their counterparts) on the socket object as usual.
This last example might require special privileges:
import socket
import struct
# CAN frame packing/unpacking (see 'struct can_frame' in <linux/can.h>)
can_frame_fmt = "=IB3x8s"
can_frame_size = struct.calcsize(can_frame_fmt)
def build_can_frame(can_id, data):
can_dlc = len(data)
data = data.ljust(8, b'\x00')
return struct.pack(can_frame_fmt, can_id, can_dlc, data)
def dissect_can_frame(frame):
can_id, can_dlc, data = struct.unpack(can_frame_fmt, frame)
return (can_id, can_dlc, data[:can_dlc])
# create a raw socket and bind it to the 'vcan0' interface
s = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)
s.bind(('vcan0',))
while True:
cf, addr = s.recvfrom(can_frame_size)
print('Received: can_id=%x, can_dlc=%x, data=%s' % dissect_can_frame(cf))
try:
s.send(cf)
except OSError:
print('Error sending CAN frame')
try:
s.send(build_can_frame(0x01, b'\x01\x02\x03'))
except OSError:
print('Error sending CAN frame')
Running an example several times with too small delay between executions, could lead to this error:
OSError: [Errno 98] Address already in use
This is because the previous execution has left the socket in a TIME_WAIT
state, and can’t be immediately reused.
There is a socket
flag to set, in order to prevent this,
socket.SO_REUSEADDR
:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((HOST, PORT))
the SO_REUSEADDR
flag tells the kernel to reuse a local socket in
TIME_WAIT
state, without waiting for its natural timeout to expire.
See also
For an introduction to socket programming (in C), see the following papers:
An Introductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest
An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler et al,
both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source of information on the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled Basic Socket Interface Extensions for IPv6.